Terahertz Electric Field Driven Electric Currents and Ratchet Effects in Graphene
نویسندگان
چکیده
Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general symmetry considerations leading to photocurrents depending on linear and circular polarized radiation and then present a number of situations where photocurrents were detected. Starting with the photon drag effect under oblique incidence, we proceed to the photogalvanic effect enhancement in the reststrahlen band of SiC and edge-generated currents in graphene. Ratchet effects were considered for in-plane magnetic fields and a structure inversion asymmetry as well as for graphene with non-symmetric patterned top gates. Lastly, we demonstrate that graphene can be used as a fast, broadband detector of terahertz radiation.
منابع مشابه
Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملTerahertz radiation driven chiral edge currents in graphene.
We observe photocurrents induced in single-layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left to right handed. We demonstrate that the photocurrent stems from the sample edges, whic...
متن کاملSynthetic electric fields and phonon damping in carbon nanotubes and graphene
Within the Dirac theory of the electronic properties of graphene, smoothly varying lattice strain affects the Dirac carriers through a synthetic gauge field. For static lattice strain, the gauge field induces a synthetic magnetic field which is known to suppress weak localization corrections by a dynamical breaking of timereversal symmetry. When the lattice strain is time dependent, as in conne...
متن کاملCoupling of plasmon modes in graphene microstructures
Articles you may be interested in Experimental study of plasmon in a grating coupled graphene device with a resonant cavity Appl. Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Pérot cavity Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices Appl. Control of the π plasmon in a single layer graphene by charge doping Appl.
متن کاملGraphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber.
In this paper, few-layer porous graphene is integrated onto the surface of a metasurface layer to provide a uniform static electric field to efficiently control liquid crystal, thereby enabling flexible metamaterial designs. We demonstrate a tunable cross-shaped metamaterial absorber with different arm lengths driven by this combined metasurface and graphene electrode. The resulting absorber su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017